
COP 4610L: Java Networking Part 3 Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Fall 2006

Java Networking and the Internet – Part 3

COP 4610L: Applications in the Enterprise
Fall 2006

Java Networking and the Internet – Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610/fall2006

COP 4610L: Java Networking Part 3 Page 2 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets

• Step 1 is to create a ServerSocket object.

• Invoking a ServerSocket constructor such as,
ServerSocket server =

new ServerSocket (portNumber, queueLength);

registers an available TCP port number and specifies
the number of clients that can wait to connect to the
server (i.e., the queue length).

COP 4610L: Java Networking Part 3 Page 3 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• The port number is used by the clients to locate the server
application on the server computer. This is often called the
handshake point.

• If the queue is full, the server refuses client connections.

• The constructor establishes the port where the server waits
for connections from clients – a process known as binding
the server to the port.

• Each client will ask to connect to the server on this port.
Only one application at a time can be bound to a specific port
on the server.

COP 4610L: Java Networking Part 3 Page 4 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• Port numbers can be between 0 and 65,535. Most
OS reserve port numbers below 1024 for system
services such as email, and Internet servers.
Generally, these ports should not be specified as
connection ports in user programs. In fact, some OS
require special access privileges to bind to port
numbers below 1024.

• Programs manage each client connection with a
Socket object.

COP 4610L: Java Networking Part 3 Page 5 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• In Step 2, the server listens indefinitely (is said to block) for
an attempt by a client to connect. To listen for a client
connection, the program calls ServerSocket method
accept, as in,

Socket connection = server.accept();

which returns a Socket when a connection with a client is
established.

• The Socket allows the server to interact with the client.

• The interactions with the client actually occur at a different
server port from the handshake port. This allows the port
specified in Step 1 to be used again in a multi-threaded
server to accept another client connection. We’ll see an
example of this later in this set of notes.

COP 4610L: Java Networking Part 3 Page 6 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• In Step 3, the OutputStream and InputStream objects
that enable the server to communicate with the client by
sending and receiving bytes are established.

• The server sends information to the client via an
OutputStream and received information from the client
via an InputStream.

• The server invokes the method getOutputStream on the
Socket to get a reference to the Socket’s OutputStream
and invokes method getInputStream on the Socket to
get a reference to the Socket’s InputStream.

COP 4610L: Java Networking Part 3 Page 7 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• If primitive types or serializable types (like String)
need to be sent rather than bytes, wrapper classes are
used to wrap other stream types around the
OutputStream and InputStream objects
associated with the Socket.

ObjectInputStream input =
new(ObjectInputStream(connection.getInputStream());

ObjectOutputStream output =
new(ObjectOutputStream(connection.getOutputStream());

COP 4610L: Java Networking Part 3 Page 8 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• The beauty of establishing these relationships is that
whatever the server writes to the
ObjectOutputStream is set via the
OutputStream and is available at the client’s
InputStream, and whatever the client writes to its
OutputStream (with a corresponding
ObjectOutputStream) is available via the
server’s InputStream.

• The transmission of the data over the network is
seamless and is handled completely by Java.

COP 4610L: Java Networking Part 3 Page 9 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• With Java’s multithreading, you can create multithreaded
servers that can manage many simultaneous connections with
many clients.

• A multithreaded server can take the Socket returned by each
call to accept and create a new thread that manages network
I/O across that Socket.

– Alternatively, a multithreaded sever can maintain a pool of threads (a
set of already existing threads) ready to manage network I/O across the
new Sockets as they are created. In this fashion, when the server
receives a connection, it need not incur the overhead of thread creation.
When the connection is closed, the thread is returned to the pool for
reuse.

COP 4610L: Java Networking Part 3 Page 10 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• Step 4 is the processing phase, in which the server
and client communicate via the OutputStream
and InputStream objects.

• In Step 5, when the transmission is complete, the
server closes the connection by invoking the close
method on the streams and on the Socket.

COP 4610L: Java Networking Part 3 Page 11 Mark Llewellyn ©

More Details on Establishing a Client
Using Stream Sockets

• Step 1 is to create a Socket object to connect to
the server. The Socket constructor established the
connection with the server.

• For example, the statement
Socket connection = new Socket(serverAddress, port);

uses the Socket constructor with two arguments –
the server’s address and the port number.

• If the connection attempt is successful, this
statement returns a Socket.

COP 4610L: Java Networking Part 3 Page 12 Mark Llewellyn ©

More Details on Establishing a Client
Using Stream Sockets (cont.)

• If the connection attempt fails, an instance of a
subclass of IOException, since so many program
simply catch IOException.

• An UnknownHostException occurs specifically
when the system is unable to resolve the server
address specified in the call to the Socket
constructor to a corresponding IP address.

COP 4610L: Java Networking Part 3 Page 13 Mark Llewellyn ©

More Details on Establishing a Client
Using Stream Sockets (cont.)

• In Step 2, the client uses Socket methods
getInputStream and getOutputStream to
obtain references to the Socket’s InputStream
and OutputStream.

• If the server is sending information in the form of
actual types (not byte streams) the client should
receive the information in the same format. Thus, if
the server sends values with an
ObjectOutputStream, the client should read
those values with an ObjectInputStream.

COP 4610L: Java Networking Part 3 Page 14 Mark Llewellyn ©

More Details on Establishing a Client
Using Stream Sockets (cont.)

• Step 3 is the same as in the server, where the client and the server
communicate via InputStream and OutputStream objects.

• In Step 4, the client closes the connection when the transmission is
complete by invoking the close method on the streams and on the
Socket.

• The client must determine when the server is finished sending
information so that it can call close to close the Socket
connection.

• For example, the InputStream method read returns the value -1
when it detects end-of-stream (also called EOF). If an
ObjectInputStream is used to read information from the
server, an EOFException occurs when the client attempts to
read a value from a stream on which end-of-stream is detected.

COP 4610L: Java Networking Part 3 Page 15 Mark Llewellyn ©

COP 4610L: Java Networking Part 3 Page 16 Mark Llewellyn ©

COP 4610L: Java Networking Part 3 Page 17 Mark Llewellyn ©

COP 4610L: Java Networking Part 3 Page 18 Mark Llewellyn ©

Using Java’s High-level Networking
Capabilities

• As we saw earlier, the TCP and UDP protocols are at the
transport layer within the Internet Reference Model. As far as
Java is concerned, these provide “low-level” networking
capability.

• Java also provides application layer networking protocol
capabilities to allow for communication between applications.

• In the examples we have seen so far, it was the developer’s
responsibility to establish a connection between the client and
the server (in the case of the UDP protocol, its more a process
of establishing the sockets since there is no connection
between the client and the server in this protocol).

COP 4610L: Java Networking Part 3 Page 19 Mark Llewellyn ©

Using Java’s High-level Networking
Capabilities (cont.)

• The next two examples illustrate Java’s application layer
capabilities which remove the responsibility of establishing the
network connection from the developer.

• The first example relies on a Web browser to establish the
communication link to a Web server. (This one uses an applet
to open a specific URL. Using a URL as an argument to the
showDocument method of interface AppletContext,
causes the browser in which the applet is executing to display
that resource.)

• The second example uses a JOptionPane to perform the
connection. (This example is an application that opens and
reads a file on a specified web server, hence it acts as a simple
web browser.)

COP 4610L: Java Networking Part 3 Page 20 Mark Llewellyn ©

Example 1 – SiteSelector Applet

<html>
<title>Site Selector</title>
<body>

<applet code = "SiteSelector.class" width = "300" height = "75">
<param name = "title0" value = "Java Home Page">
<param name = "location0" value = "http://www.java.sun.com/">
<param name = "title1" value = "COP 4610L Home Page">
<param name = "location1" value = "http://www.cs.ucf.edu/courses/cop4610/fall2006">
<param name = "title2" value = "World Cycling News">
<param name = "location2" value = "http://www.cyclingnews.com/">
<param name = "title3" value = "Formula 1 News">
<param name = "location3" value = "http://www.formula1.com/">

</applet>
</body>
</html>

HTML document to load the SiteSelctor Applet

COP 4610L: Java Networking Part 3 Page 21 Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)

// SiteSelector.java
// This program loads a document from a URL.
import java.net.MalformedURLException;
import java.net.URL;
import java.util.HashMap;
import java.util.ArrayList;
import java.awt.BorderLayout;
import java.applet.AppletContext;
import javax.swing.JApplet;
import javax.swing.JLabel;
import javax.swing.JList;
import javax.swing.JScrollPane;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;

public class SiteSelector extends JApplet
{

private HashMap< Object, URL > sites; // site names and URLs
private ArrayList< String > siteNames; // site names
private JList siteChooser; // list of sites to choose from

// read HTML parameters and set up GUI

COP 4610L: Java Networking Part 3 Page 22 Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)
public void init()
{

sites = new HashMap< Object, URL >(); // create HashMap
siteNames = new ArrayList< String >(); // create ArrayList
// obtain parameters from HTML document
getSitesFromHTMLParameters();
// create GUI components and layout interface
add(new JLabel("Choose a site to browse"), BorderLayout.NORTH);
siteChooser = new JList(siteNames.toArray()); // populate JList
siteChooser.addListSelectionListener(

new ListSelectionListener() // anonymous inner class
{ // go to site user selected

public void valueChanged(ListSelectionEvent event)
{

// get selected site name
Object object = siteChooser.getSelectedValue();
// use site name to locate corresponding URL
URL newDocument = sites.get(object);
// get applet container
AppletContext browser = getAppletContext();
// tell applet container to change pages
browser.showDocument(newDocument);

} // end method valueChanged
} // end anonymous inner class

}; // end call to addListSelectionListener

COP 4610L: Java Networking Part 3 Page 23 Mark Llewellyn ©

Example 1 – SiteSelector Applet (cont.)
add(new JScrollPane(siteChooser), BorderLayout.CENTER);

} // end method init
// obtain parameters from HTML document
private void getSitesFromHTMLParameters()
{

String title; // site title
String location; // location of site
URL url; // URL of location
int counter = 0; // count number of sites
title = getParameter("title" + counter); // get first site title
// loop until no more parameters in HTML document
while (title != null)
{

// obtain site location
location = getParameter("location" + counter);
try // place title/URL in HashMap and title in ArrayList
{

url = new URL(location); // convert location to URL
sites.put(title, url); // put title/URL in HashMap
siteNames.add(title); // put title in ArrayList

} // end try
catch (MalformedURLException urlException)
{

urlException.printStackTrace();
} // end catch

counter++;
title = getParameter("title" + counter

); // get next site title
} // end while

} // end method
getSitesFromHTMLParameters
} // end class SiteSelector

COP 4610L: Java Networking Part 3 Page 24 Mark Llewellyn ©

Original SiteSelector Applet before
user selected World Cycling News as

the resource to be opened. Once
selected this brought up the webpage
shown behind the applet invocation.

COP 4610L: Java Networking Part 3 Page 25 Mark Llewellyn ©

Example 2 – ReadServerFile Application
// ReadServerFile.java
// Use a JEditorPane to display the contents of a file on a Web server.
// Application showing high-level Java networking capabilities
import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;
import javax.swing.JEditorPane;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.JScrollPane;
import javax.swing.JTextField;
import javax.swing.event.HyperlinkEvent;
import javax.swing.event.HyperlinkListener;

public class ReadServerFile extends JFrame
{

private JTextField enterField; // JTextField to enter site name
private JEditorPane contentsArea; // to display Web site
// set up GUI
public ReadServerFile()
{

super("Simple Web Browser");

COP 4610L: Java Networking Part 3 Page 26 Mark Llewellyn ©

Example 2 – ReadServerFile Application (cont.)
// create enterField and register its listener
enterField = new JTextField("Enter file URL here");
enterField.addActionListener(

new ActionListener()
{

// get document specified by user
public void actionPerformed(ActionEvent event)
{

getThePage(event.getActionCommand());
} // end method actionPerformed

} // end inner class
); // end call to addActionListener
add(enterField, BorderLayout.NORTH);
contentsArea = new JEditorPane(); // create contentsArea
contentsArea.setEditable(false);
contentsArea.addHyperlinkListener(

new HyperlinkListener()
{

// if user clicked hyperlink, go to specified page
public void hyperlinkUpdate(HyperlinkEvent event)
{

if (event.getEventType() == HyperlinkEvent.EventType.ACTIVATED)
getThePage(event.getURL().toString());

} // end method hyperlinkUpdate
} // end inner class

); // end call to addHyperlinkListener

COP 4610L: Java Networking Part 3 Page 27 Mark Llewellyn ©

Example 2 – ReadServerFile Application (cont.)

add(new JScrollPane(contentsArea), BorderLayout.CENTER);
setSize(400, 300); // set size of window
setVisible(true); // show window

} // end ReadServerFile constructor

// load document
private void getThePage(String location)
{

try // load document and display location
{

contentsArea.setPage(location); // set the page
enterField.setText(location); // set the text

} // end try
catch (IOException ioException)
{

JOptionPane.showMessageDialog(this,
"Error retrieving specified URL", "Bad URL",
JOptionPane.ERROR_MESSAGE);

} // end catch
} // end method getThePage

} // end class ReadServerFile

// ReadServerFileTest.java
// Create and start a ReadServerFile.
import javax.swing.JFrame;

public class ReadServerFileTest
{

public static void main(String args[])
{

ReadServerFile application = new ReadServerFile();
application.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
} // end main

} // end class ReadServerFileTest

Driver class to execute
ReadServerFile application

COP 4610L: Java Networking Part 3 Page 28 Mark Llewellyn ©

Initial Web browser GUI
GUI after user
entered URL

COP 4610L: Java Networking Part 3 Page 29 Mark Llewellyn ©

Secure Sockets Layer (SSL)
• Most e-business uses SSL for secure on-line transactions.
• SSL does not explicitly secure transactions, but rather secures

connections.

• SSL implements public-key technology using the RSA
algorithm (developed in 1977 at MIT by Ron Rivest, Adi
Shamir, and Leonard Adleman) and digital certificates to
authenticate the server in a transaction and to protect private
information as it passes from one part to another over the
Internet.

• SSL transactions do not require client authentication as most
servers consider a valid credit-card number to be sufficient for
authenticating a secure purchase.

COP 4610L: Java Networking Part 3 Page 30 Mark Llewellyn ©

How SSL Works
• Initially, a client sends a message to a server.

• The server responds and sends its digital certificate to the client for
authentication.

• Using public-key cryptography to communicate securely, the client
and server negotiate session keys to continue the transaction.

• Once the session keys are established, the communication proceeds
between the client and server using the session keys and digital
certificates.

• Encrypted data are passed through TCP/IP (just as regular packets
over the Internet). However, before sending a message with
TCP/IP, the SSL protocol breaks the information into blocks and
compresses and encrypts those blocks.

COP 4610L: Java Networking Part 3 Page 31 Mark Llewellyn ©

How SSL Works (cont.)

• Once the data reach the receiver through TCP/IP, the SSL
protocol decrypts the packets, then decompresses and
assembles the data. It is these extra processes that provide an
extra layer of security between TCP/IP and applications.

• SSL is used primarily to secure point-to-point connections
using TCP/IP rather than UDP/IP.

• The SSL protocol allows for authentication of the server, the
client, both, or neither. Although typically in Internet SSL
sessions only the server is authenticated.

COP 4610L: Java Networking Part 3 Page 32 Mark Llewellyn ©

2. Server hello

3. Certificate optional

4. Certificate request optional

5. Server key exchange optional

6. Server hello done

12. Change to encrypted mode

13. Finished

14. Encrypted data

15. Close messages

SERVER

1. Client hello

7. Certificate optional

8. Client Key exchange

9. Certificate verify optional

10. Change to encrypted mode

11. Finished

14. Encrypted data

15. Close messages.

CLIENT

COP 4610L: Java Networking Part 3 Page 33 Mark Llewellyn ©

Details Of The SSL Protocol

• Use the diagram on the previous page to index the
steps.

1. Client hello. The client sends the server
information including the highest level of SSL it
supports and a list of the cipher suites it supports
including cryptographic algorithms and key sizes.

2. Server hello. The server chooses the highest
version of SSL and the best cipher suite that both
the client and server support and sends this
information to the client.

COP 4610L: Java Networking Part 3 Page 34 Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

3. Certificate. The server sends the client a certificate
or a certificate chain. Optional but used whenever
server authentication is required.

4. Certificate Request. If the server needs to
authenticate the client, it sends the client a
certificate request. In most Internet applications
this message is rarely sent.

5. Server key exchange. The server sends the client a
server key exchange message when the public key
information sent in (3) above is not sufficient for
key exchange.

COP 4610L: Java Networking Part 3 Page 35 Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

6. Server hello done. The server tells the client that it
is finished with its initial negotiation messages.

7. Certificate. If the server requests a certificate from
the client in (4), the client sends its certificate chain,
just as the server did in (3).

8. Client key exchange. The client generates
information used to create a key to use for
symmetric encryption. For RSA, the client then
encrypts this key information with the server’s
public key and sends it to the server.

COP 4610L: Java Networking Part 3 Page 36 Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

9. Certificate verify. This message is sent when a
client presents a certificate as above. Its purpose is
to allow the server to complete the process of
authenticating the client. When this message is
used, the client sends information that it digitally
signs using a cryptographic hash function. When
the server decrypts this information with the client’s
public key, the server is able to authenticate the
client.

10. Change to encrypted mode. The client sends a
message telling the server to change to encrypted
mode.

11. Finished. The client tells the server that it is ready
for secure data communication to begin.

COP 4610L: Java Networking Part 3 Page 37 Mark Llewellyn ©

Details Of The SSL Protocol (cont.)

12. Change to encrypted mode. The server sends a
message telling the client to switch to encrypted mode.

13. Finished. The server tells the client that it is ready for
secure data communication to begin. This marks the
end of the SSL handshake.

14. Encrypted data. The client and the server communicate
using the symmetric encryption algorithm and the
cryptographic hash function negotiated in (1) and (2),
and using the secret key that the client sent to the server
in (8).

15. Close messages. At the end of the connection, each
side will send a close_notify message to inform the peer
that the connection is closed.

COP 4610L: Java Networking Part 3 Page 38 Mark Llewellyn ©

Java Secure Socket Extension (JSSE)
• SSL encryption has been integrated into Java technology

through the Java Secure Socket Extension (JSSE). JSSE has
been an integral part of Java (not a separately loaded
extension) since version 1.4.

• JSSE provides encryption, message integrity checks, and
authentication of the server and client.

• JSSE uses keystores to secure storage of key pairs and
certificates used in PKI (Public Key Infrastructure which
integrates public-key cryptography with digital certificates
and certificate authorities to authenticate parties in a
transaction.)

• A truststore is a keystore that contains keys and certificates
used to validate the identities of servers and clients.

COP 4610L: Java Networking Part 3 Page 39 Mark Llewellyn ©

Java Secure Socket Extension (JSSE) (cont.)

• Using secure sockets in Java is very similar to using the non-
secure sockets that we have already seen.

• JSSE hides the details of the SSL protocol and encryption
from the programmer entirely.

• The final example in this set of notes involves a client
application that attempts to logon to a server using SSL.

• NOTE: Before attempting to execute this application, look at
the code first and then go to page 45 for execution details.
This application will not execute correctly unless you follow
the steps beginning on page 45.

COP 4610L: Java Networking Part 3 Page 40 Mark Llewellyn ©

// LoginServer.java
// LoginServer uses an SSLServerSocket to demonstrate JSSE's SSL implementation.
package securitystuff.jsse;

// Java core packages
import java.io.*;

// Java extension packages
import javax.net.ssl.*;

public class LoginServer {
private static final String CORRECT_USER_NAME = "Mark";
private static final String CORRECT_PASSWORD = "COP 4610L";
private SSLServerSocket serverSocket;

// LoginServer constructor
public LoginServer() throws Exception
{

// SSLServerSocketFactory for building SSLServerSockets
SSLServerSocketFactory socketFactory =

(SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();

// create SSLServerSocket on specified port
serverSocket = (SSLServerSocket)

socketFactory.createServerSocket(7070);

} // end LoginServer constructor

LoginServer.java

SSL Server Implementation

SSL socket will listen on port 7070

Use default
SSLServerSocketFactory to
create SSL sockets

COP 4610L: Java Networking Part 3 Page 41 Mark Llewellyn ©

// start server and listen for clients
private void runServer()
{

// perpetually listen for clients
while (true) {

// wait for client connection and check login information
try {

System.err.println("Waiting for connection...");
// create new SSLSocket for client

SSLSocket socket = (SSLSocket) serverSocket.accept();
// open BufferedReader for reading data from client
BufferedReader input = new BufferedReader(

new InputStreamReader(socket.getInputStream()));
// open PrintWriter for writing data to client
PrintWriter output = new PrintWriter(
new OutputStreamWriter(socket.getOutputStream()));

String userName = input.readLine();
String password = input.readLine();
if (userName.equals(CORRECT_USER_NAME) &&

password.equals(CORRECT_PASSWORD)) {
output.println("Welcome, " + userName);

}
else {

output.println("Login Failed.");
}

Accept new client connection.
This is a blocking call that
returns an SSLSocket when a
client connects.

Get input and output
streams just as with
normal sockets.

Validate user name and
password against constants
on the server.

COP 4610L: Java Networking Part 3 Page 42 Mark Llewellyn ©

// clean up streams and SSLSocket
output.close();
input.close();
socket.close();

} // end try

// handle exception communicating with client
catch (IOException ioException) {

ioException.printStackTrace();
}

} // end while

} // end method runServer

// execute application
public static void main(String args[]) throws Exception
{

LoginServer server = new LoginServer();
server.runServer();

}
} //end LoginServer class

Close down I/O streams and the socket

COP 4610L: Java Networking Part 3 Page 43 Mark Llewellyn ©

// LoginClient.java
// LoginClient uses an SSLSocket to transmit fake login information to LoginServer.
package securitystuff.jsse;
// Java core packages
import java.io.*;
// Java extension packages
import javax.swing.*;
import javax.net.ssl.*;

public class LoginClient {
// LoginClient constructor

public LoginClient()
{

// open SSLSocket connection to server and send login
try {

// obtain SSLSocketFactory for creating SSLSockets
SSLSocketFactory socketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();
// create SSLSocket from factory
SSLSocket socket = (SSLSocket) socketFactory.createSocket("localhost", 7070);
// create PrintWriter for sending login to server
PrintWriter output = new PrintWriter(

new OutputStreamWriter(socket.getOutputStream()));
// prompt user for user name
String userName = JOptionPane.showInputDialog(null, "Enter User Name:");
// send user name to server

output.println(userName);

LoginClient.java

Client Class for SSL Implementation

SSL socket will listen on port 7070

Use default SSLSocketFactory
to create SSL sockets

COP 4610L: Java Networking Part 3 Page 44 Mark Llewellyn ©

// prompt user for password
String password = JOptionPane.showInputDialog(null, "Enter Password:");
// send password to server
output.println(password);
output.flush();
// create BufferedReader for reading server response
BufferedReader input = new BufferedReader(

new InputStreamReader(socket.getInputStream ()));
// read response from server
String response = input.readLine();
// display response to user
JOptionPane.showMessageDialog(null, response);
// clean up streams and SSLSocket

output.close();
input.close();
socket.close();

} // end try
// handle exception communicating with server
catch (IOException ioException) {

ioException.printStackTrace();
}
// exit application
finally {

System.exit(0);
}

} // end LoginClient constructor

// execute application
public static void main(String

args[])
{

new LoginClient();
}

}

COP 4610L: Java Networking Part 3 Page 45 Mark Llewellyn ©

Creating Keystore and Certificate

• Before you can execute the LoginServer and LoginClient
application using SSL you will need to create a keystore and
certificate for the SSL to operate correctly.

• Utilizing the keytool (a key and certificate management tool)
in Java generate a keystore and a certificate for this server
application. See the next slide for an example.

• We’ll use the same keystore for both the server and the client
although in reality these are often different. The client’s
truststore, in real-world applications, would contain trusted
certificates, such as those from certificate authorities (e.g.
VeriSign (www.verisign.com), etc.).

COP 4610L: Java Networking Part 3 Page 46 Mark Llewellyn ©

Creating Keystore and Certificate

Note requirements for password.

COP 4610L: Java Networking Part 3 Page 47 Mark Llewellyn ©

Creating Keystore and Certificate
Viewing the keystore contents
after its creation.

Notice the entry type is keyEntry
which means that this entry has a
private key associated with it.

COP 4610L: Java Networking Part 3 Page 48 Mark Llewellyn ©

Creating Keystore and Certificate

Export the certificate into a
certificate file.

Contents of the certificate.

COP 4610L: Java Networking Part 3 Page 49 Mark Llewellyn ©

Creating Keystore and Certificate

Import the certificate into a
new truststore.

COP 4610L: Java Networking Part 3 Page 50 Mark Llewellyn ©

Creating Keystore and Certificate
View the contents of the

truststore.

Note that the entry type is trustedCertEntry, which
means that a private key is not available for this entry. It
also means that this file is not suitable as a
KeyManager's keystore.

COP 4610L: Java Networking Part 3 Page 51 Mark Llewellyn ©

Launching the Secure Server

• Now you are ready to start the server executing from a
command prompt…

• Once started, the server simply waits for a connection from a
client. The example below illustrates the server after waiting
for several minutes.

Start the SSL Server executing with this
command where you replace this password
with the password you used when you set-
up the keystore.

COP 4610L: Java Networking Part 3 Page 52 Mark Llewellyn ©

Launching the SSL Client

• Start a client application executing from a new command
window…

• Once the client establishes communication with the server, the
authentication process begins.

Start the SSL Client application executing with this
command where you replace this password with
the password you used when you set-up the
keystore. Since we are using the same keystore
for the server and the client…these will be the
same.

COP 4610L: Java Networking Part 3 Page 53 Mark Llewellyn ©

User enters username
and password which

are sent to the server.

Authentication successful –
user is logged on.

COP 4610L: Java Networking Part 3 Page 54 Mark Llewellyn ©

User enters username and
password which are sent to the
server. In this case the user enters
an incorrect password.

Authentication not successful –
user is not logged on.

COP 4610L: Java Networking Part 3 Page 55 Mark Llewellyn ©

Multithreaded Socket Client/Server Example
• As a culminating example of networking and multi-threading, I’ve

put together a rudimentary multi-threaded socket-based
TicTacToe client/server application. The code is rather lengthy
and there isn’t really anything in it that we haven’t already seen in
the earlier sections of the notes. However, I did want you to see a
somewhat larger example that utilizes both sockets and threading
in Java. The code is on the course web page so try it out.

• This application is a multithreaded server that will allow two
client’s to play a game of TicTacToe run on the server.

• To execute, open three command windows, start one server and
two clients (in separate windows).

• The following few pages contain screen shots of what you should
see when executing this code.

COP 4610L: Java Networking Part 3 Page 56 Mark Llewellyn ©

Start server running…

COP 4610L: Java Networking Part 3 Page 57 Mark Llewellyn ©

Indicate to first player that
server is waiting for another
player thread to connect.

Start first player thread

COP 4610L: Java Networking Part 3 Page 58 Mark Llewellyn ©

Server
completes
connection for
second player.
Notifies Player
X that they can
make their
move.

Player X is notified by
server that another
player has connected
and they can make
their move.

Second player
thread connects to
server and is ready
to play.

COP 4610L: Java Networking Part 3 Page 59 Mark Llewellyn ©

Server validates move
made by Player X,
records board
configuration and
notifies Player O that
they can move and
redraws the board for
Player O.

Player X makes a
move by placing an
“X” marker in location
4 of the game board.

Player O sees the
move made by
Player X and is now
ready to make a
move.

COP 4610L: Java Networking Part 3 Page 60 Mark Llewellyn ©

Although Player X
has won the game,
this server is too
dumb to know this
and allows the
game to continue

Player O is notified that Player X has
made a move and is graphically
shown the updated board layout.
Server indicates Player O is now
able to make their move. No
indication is given that the game is
technically over.

