Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610/fall2006

School of Electrical Engineering and Computer Science
University of Central Florida

COP 4610L: Java Networking Part 3 Page 1 Mark Llewellyn ©

&




More Detalils on Establishing a
Server Using Stream Sockets

« Step 1isto create a ServerSocket object.

 Invoking a ServerSocket constructor such as,

ServerSocket server =

new ServerSocket (portNumber, queuelLength);

registers an available TCP port number and specifies

the number of clients that can wait to connect to the
server (i.e., the queue length).

COP 4610L: Java Networking Part 3 Page 2 Mark Llewellyn ©




More Detalls on Establishing a
Server Using Stream Sockets (cont)

The port number is used by the clients to locate the server
application on the server computer. This iIs often called the
handshake point.

If the queue is full, the server refuses client connections.

The constructor establishes the port where the server waits
for connections from clients — a process known as binding
the server to the port.

Each client will ask to connect to the server on this port.
Only one application at a time can be bound to a specific port
on the server.

COP 4610L: Java Networking Part 3 Page 3 Mark Llewellyn ©




More Detalls on Establishing a
Server Using Stream Sockets (cont)

Port numbers can be between 0 and 65,535. Most
OS reserve port numbers below 1024 for system
services such as email, and Internet servers.
Generally, these ports should not be specified as
connection ports in user programs. In fact, some OS
require special access privileges to bind to port
numbers below 1024.

Programs manage each client connection with a
Socket object.

P
COP 4610L: Java Networking Part 3 Page 4 Mark Llewellyn © gjt




More Detalils on Establishing a

Server Using Stream Sockets (cont)

In Step 2, the server listens indefinitely (is said to block) for

an attempt by a client to connect. To listen for a client
connection, the program calls ServerSocket method

accept, asin,
Socket connection = server.accept();

which returns a Socket when a connection with a client is
established.

The Socket allows the server to interact with the client.

The interactions with the client actually occur at a different
server port from the handshake port. This allows the port
specified in Step 1 to be used again in a multi-threaded
server to accept another client connection. We’ll see an
example of this later in this set of notes.

r
COP 4610L: Java Networking Part 3 Page 5 Mark Llewellyn © gj!




More Detalls on Establishing a
Server Using Stream Sockets (cont)

In Step 3, the OutputStream and InputStream objects

that enable the server to communicate with the client by
sending and receiving bytes are established.

The server sends information to the client via an
OutputStream and received information from the client

via an InputStream.

The server invokes the method getOutputStream on the
Socket to get a reference to the Socket’s OutputStream
and invokes method getlnputStream on the Socket to
get a reference to the Socket’s InputStream.

P
COP 4610L: Java Networking Part 3 Page 6 Mark Llewellyn © gjt




More Detalls on Establishing a
Server Using Stream Sockets (cont)

« |If primitive types or serializable types (like String)
need to be sent rather than bytes, wrapper classes are

used to wrap other stream types around the
OutputStream and InputStream objects

assoclated with the Socket.

ObjectlnputStream i1nput =
new(ObjectlnputStream(connection.getlnputStream());

ObjectOutputStream output =
new(ObjectOutputStream(connection.getOutputStream());

P
COP 4610L: Java Networking Part 3 Page 7 Mark Llewellyn © gjr




More Detalls on Establishing a
Server Using Stream Sockets (cont)

The beauty of establishing these relationships Is that

whatever the server writes to the
ObjectOutputStream is set via the

OutputStream and iIs available at the client’s
InputStream, and whatever the client writes to Its
OutputStream (with a corresponding
ObjectOutputStream) 1Is available via the
server’s InputStream.

The transmission of the data over the network Is
seamless and is handled completely by Java.

r
COP 4610L: Java Networking Part 3 Page 8 Mark Llewellyn © gj!




More Detalls on Establishing a
Server Using Stream Sockets (cont)

With Java’s multithreading, you can create multithreaded
servers that can manage many simultaneous connections with
many clients.

A multithreaded server can take the Socket returned by each

call to accept and create a new thread that manages network
I/O across that Socket.

— Alternatively, a multithreaded sever can maintain a pool of threads (a
set of already existing threads) ready to manage network 1/O across the
new Sockets as they are created. In this fashion, when the server
receives a connection, it need not incur the overhead of thread creation.
When the connection is closed, the thread is returned to the pool for
reuse.

P
COP 4610L: Java Networking Part 3 Page 9 Mark Llewellyn © gjr




More Detalls on Establishing a
Server Using Stream Sockets (cont)

Step 4 Is the processing phase, in which the server
and client communicate via the OutputStream

and InputStream objects.

In Step 5, when the transmission is complete, the
server closes the connection by invoking the close

method on the streams and on the Socket.

COP 4610L: Java Networking Part 3 Page 10 Mark Llewellyn ©




More Detalls on Establishing a Client
Using Stream Sockets

Step 1 Is to create a Socket object to connect to

the server. The Socket constructor established the
connection with the server.

For example, the statement

Socket connection = new Socket(serverAddress, port);

uses the Socket constructor with two arguments —
the server’s address and the port number.

If the connection attempt 1Is successful, this
statement returns a Socket.

P
COP 4610L: Java Networking Part 3 Page 11 Mark Llewellyn © gjr




More Detalls on Establishing a Client
Using Stream Sockets (cont)

 |If the connection attempt fails, an Instance of a
subclass of IOEXxception, since so many program
simply catch IOException.

« An UnknownHostException occurs specifically
when the system Is unable to resolve the server
address specified In the call to the Socket
constructor to a corresponding IP address.

COP 4610L: Java Networking Part 3 Page 12 Mark Llewellyn ©




More Detalls on Establishing a Client
Using Stream Sockets (cont)

In Step 2, the client uses Socket methods
getlnputStream and getOutputStream to
obtain references to the Socket’s InputStream

and OutputStream.

If the server iIs sending information in the form of
actual types (not byte streams) the client should
recelve the information in the same format. Thus, If
the server sends values with an
ObjectOutputStream, the client should read
those values with an ObjectInputStream.

r
COP 4610L: Java Networking Part 3 Page 13 Mark Llewellyn © gj!




More Detalls on Establishing a Client
Using Stream Sockets (cont)

Step 3 is the same as in the server, where the client and the server
communicate via InputStream and OutputStream objects.

In Step 4, the client closes the connection when the transmission is
complete by invoking the close method on the streams and on the
Socket.

The client must determine when the server is finished sending
Information so that it can call close to close the Socket

connection.

For example, the InputStream method read returns the value -1

when it detects end-of-stream (also called EOF). If an
ObjectInputStream is used to read information from the
server, an EOFException occurs when the client attempts to

read a value from a stream on which end-of-stream iIs detected.

P
COP 4610L: Java Networking Part 3 Page 14 Mark Llewellyn © gjt




UDP Server

S Facket received from Client:
From host M 32170107.73

Thisg is my first UDP message.
Echo data to client.. .Packet sent

Facket received from Client:
From host M 32170107.73

Thig is my second UDP message.

Echo data to client.. .FPacket sent

s P acket received from Client:
B(From host M132.170.107.73

Thisg is my third UDF message.
Echo data to client.. .Packet sent

il Facket received from Client:
From host M 32170107.73

This is my fourth UDF message.

Echo data to client.. .Packet sent

U AL

< UDP Client
This iz mmy fourth LUDP message.

Sending packet containing: This is my first UDP message.
Facket sent

Facket received from Server:
PFrom host A132170107.73
HMHost port 5000

HLength: 29

Facket Contains:

Thiz is my first UDP message.
Sending packet containing: This is my second UDP message.
Facket sent

Facket received from Server:
From host M 32170107.73

Facket Contains:
Thiz is my second UDF message.

Sending packet containing: This is my third UDP message.
Facket sent

Facket received from Server:
From host M 32170107.73

Facket Contains:

Thiz is my third UDP message.
Sending packet containing: This is my fourth WDF message.
Facket sent

Facket received from Server:
From host M 32170107.73

schedules: & O Tl e 215

.-!'.1-1' -

|

Sharkouk

Loc5

Crept

annualirep




et received from Client:
thost M32170107.73
port: 1514
th: 28
aining:
First message from client #1

data to client. . .Facket sent

et received from Client:
thost M32170107.73
port 15148
th: 28
aining:
First message from client #2

data to client. . .Facket sent

et received from Client:
thost M32170107.73
port: 1514
th: 29
aining:
Second message from client #1

data to client. . .Facket sent

et received from Client:
thost M32170107.73
port 15148
th: 29
aining:
Second message from client #2

data to client. . .Facket sent

UDP Client

=.. UDP Client

Second message from client #2

Second messade from client #1

Sending packet containing: First message from client #1

Piiclat sant Sending packet cantaining: First message from client 32

Facket sent

Facket received from Server;

From host /132.170.107.73 P agkatiecole IO Sefvbl:

Frarm host M132170107.73

Facket Contains:
First message from client #1

Sending packet containing: Second messade from client #1
Facket zent

First message from client #2
Sending packet cantaining: Second message fram clien
Facket zant

Facket received from Server;

From host /132.170.107.73 P Akt iecole 00T Sefvhl:

From hast M32170107 .73
Host port: 5000
q Length: 29
Facket Contains:
Second message from client 32

Facket Contains:
Second message from client #1

Shortcuk ko 5. Shorkouk
[ept annualirep




LIDP Server

Facket received from Client:
Fram host M 32170107.73

This is vy first UDP message.
Echio data to client.. . Packet sent

Facket received from Client:
Fram host M 32170107.73

This iz rmy second LIDP message.
Echo data to client. Packet sent

Facket received from Client:
Fram host M 32170107.73

This is oy third UDP messange.

Echio data to client.. . Packet sent

Facket received from Client:
Fram host M 32170107.73

This iz rmy fourth LUDP message.

Echio data to client.. . Packet sent

COP 4610L: Java Networking Part 3

(3

This iz my fourth UDP message.

Sending packet containing: This is my first LIDP message.
Facket sent

Facket received from Senrer:|
From host: M32170107.73
Host port: 2000
Length: 29
Facket Contains:
Thig is my first LIDP message.
Sending packet containing: This is my second UDP message.
Facket sent

Facket received from Server:
From host: M32170107.73
Host port: 2000
Length: 30
Facket Contains:
This is my second UDF message.

Sending packet containing: This is my third LIDP message.
Facket sent

Facket received from Server:
From host: M32170107.73
Host port: 2000
Length: 29
Facket Contains:
Thisg is vy third UDP message.
Sending packet containing: This is my fourth LUDF message.
Facket sent

Facket received from Server:
From host: M32170107.73
Host port: 2000
Length: 30
Facket Contains:
This is my fourth LUDF messane.

Page 17 Mark Llewellyn ©




Using Java’s High-level Networking
Capabllities

 As we saw earlier, the TCP and UDP protocols are at the
transport layer within the Internet Reference Model. As far as
Java Is concerned, these provide “low-level” networking
capability.

e Java also provides application layer networking protocol
capabilities to allow for communication between applications.

e In the examples we have seen so far, it was the developer’s
responsibility to establish a connection between the client and
the server (in the case of the UDP protocol, its more a process
of establishing the sockets since there IS no connection
between the client and the server in this protocol).

.
COP 4610L: Java Networking Part 3 Page 18 Mark Llewellyn © g/




Using Java’s High-level Networking

Capabillities (cont)

« The next two examples illustrate Java’s application layer
capabilities which remove the responsibility of establishing the
network connection from the developer.

e The first example relies on a Web browser to establish the
communication link to a Web server. (This one uses an applet

to open a specific URL. Using a URL as an argument to the
showDocument method of interface AppletContext,

causes the browser in which the applet is executing to display
that resource.)

e The second example uses a JOptionPane to perform the
connection. (This example is an application that opens and
reads a file on a specified web server, hence it acts as a simple
web browser.)

r
COP 4610L: Java Networking Part 3 Page 19 Mark Llewellyn © g)}




Example 1 — SiteSelector Applet

<html|>
<title>Site Selector</title>
<body>
<applet code = "SiteSelector.class" width = "300" height = "75">
<param name = "title0" value = "Java Home Page">
<param name = "locationQ" value = "http://www.java.sun.com/">
<param name = "title1" value = "COP 4610L Home Page">
<param name = "location1" value = "http://www.cs.ucf.edu/courses/cop4610/fall2006">
<param name = "title2" value = "World Cycling News">
<param name = "location2" value = "http://www.cyclingnews.com/">
<param name = "title3" value = "Formula 1 News">
<param name = "location3" value = "http://www.formulal.com/">
</applet>
</body>
</html|>

HTML document to load the SiteSelctor Applet

COP 4610L: Java Networking Part 3 Page 20 Mark Llewellyn ©




Example 1 — SiteSelector Applet (ont)

/I SiteSelector.java

/I This program loads a document from a URL.
import java.net.MalformedURLEXxception;
import java.net.URL;

Import java.util. HashMap;

Import java.util. ArrayList;

Import java.awt.BorderLayout;

import java.applet.AppletContext;

import javax.swing.JApplet;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JScrollPane;

Import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;

public class SiteSelector extends JApplet

{
private HashMap< Object, URL > sites; // site names and URLs

private ArrayList< String > siteNames; // site names
private JList siteChooser; // list of sites to choose from

// read HTML parameters and set up GUI

COP 4610L: Java Networking Part 3 Page 21

Mark Llewellyn ©




Example 1 — SiteSelector Applet (ont)

public void init()
{
sites = new HashMap< Object, URL >(); // create HashMap
siteNames = new ArrayL.ist< String >(); // create ArrayL.ist
// obtain parameters from HTML document
getSitesFromHTMLParameters();
/Il create GUI components and layout interface
add( new JLabel( "Choose a site to browse" ), BorderLayout.NORTH );
siteChooser = new JList( sittNames.toArray() ); // populate JList
siteChooser.addL.istSelectionListener(
new ListSelectionListener() // anonymous inner class
{ // goto site user selected
public void valueChanged( ListSelectionEvent event )
{
/I get selected site name
Object object = siteChooser.getSelectedValue();
/I use site name to locate corresponding URL
URL newDocument = sites.get( object );
Il get applet container
AppletContext browser = getAppletContext();
/[ tell applet container to change pages
browser.showDocument( newDocument );
} // end method valueChanged
} // end anonymous inner class
}; // end call to addL.istSelectionListener

COP 4610L: Java Networking Part 3 Page 22 Mark Llewellyn ©




Example 1 — SiteSelector Applet (ont)

add( new JScrollPane( siteChooser ), BorderLayout. CENTER );
} // end method init
/[ obtain parameters from HTML document
private void getSitesFromHTMLParameters()
{
String title; // site title
String location; // location of site
URL url; // URL of location
int counter = 0; // count number of sites
title = getParameter( "title™ + counter ); // get first site title
// loop until no more parameters in HTML document
while ( title 1= null)
{
/[ obtain site location
location = getParameter( "location™ + counter );
try // place title/URL in HashMap and title in ArrayList

{ ++;
url = new URL( location ); // convert location to URL Prlicae Countteirtle . etparameter( “fitle" + counter
sites.put( title, url ); // put title/URL in HashMap S Il et nextgsite e
siteNames.add( title ); // put title in ArrayList /’ 119 .
}//end try / }// end while
; : 2 } // end method
S
zatch ( MalformedURLEXxception urlException ) getSitesEromHTMLParameters
urlException.printStackTrace(); /,/' } /I'end class SiteSelector
}/endcatch emmmmmTmmmmmmmmeeT

COP 4610L: Java Networking Part 3 Page 23 Mark Llewellyn ©




File  Edit

e Back -~

Wiew

Fawvorites

9 ¥ &

2 www.cyclingnews.com - the first WWW cycling results and news sepwira - Mirrnenft Intarnat Fxnlarar

Tools  Help

_M_

/..\J Search a

File

¢ Favarites Q‘E

Address |=éj hktp: v, cvclingnews, com! ]

ul

Google - |

v| |G| search -~ 52 Ehedblocked M

Numbe'rgr MIC
Phaoto: @ CJ Farquharson

Fantasy Games

REGISTRATION
NOW OPEN

Travel Index

Tech Index World Times

2} Site Selector - Microsoft Internet Explorer
Edit

Wi Tools

Q-

Favarites Help

-:] /.'_\J Search ‘"E::(’ Favarites ﬁcj >

Address |@ E:\Courses\COP 46101 - 05 LabiFall 2006 code! SikeSelector, kil

V|G-:|

N

>
L“'-';'F
. »g—
Links

Italiano - Colnago, Pinarello & De Raosa, Pro bike: Sabrina

Jonnier's world champion Iron Horse, On test: Dinotte Ultra

5 LED, Pro bike: Steve Peat's Santa Cruz W-10, On test:
Capo Forma & De Marchi woal- rnlx jersevs, Lake 400

bilk
fours.com

shoes, Ellsworth Truth MT Bk il Lt L

Diaries: Mary McConneloug & Mike Brpderick: Where in the
world, Sunn-Rita Dahle: Savouring a Ynigue performance,
Kristin Danielson: Looking forward to fiding trails, Cam
Jennings: Ancother day at the office, Jeoff Kabush: Back in
L 4] 4 4

alma

More tech

Form & fitness Qe
Fitness aticles
Fitness resources

Features Index
Latest rider transfers
Rider Diaries
Rider Inte rvizws

& Profiles

Pro Sites

AlS Women's
Kimberhy Baldwin
Faaolo Bettini
Keith Bontrager
Jdame Carney

Major Races

Yuelta a Espahna, Spa (0
Aug 26-Sep 17: Stage 17
results & brief report, Live|
Stage 16 - Full results, reg
photaos, Live report, Rest d

Original SiteSelector Applet before
user selected World Cycling News as
the resource to be opened. Once
selected this brought up the webpage
shown behind the applet invocation.

=3 wild and wonderful,

L wARIABLE

Google - | v| Gl search ~ 52 Shz4blocked » -
’ -
c yc ’ Choose a site to browse
Java Home Page |~ |
: orld COP 4610L Home Page 1=
| Aust EST Sep 14 3142 19 | World c:.'fcli"g News :
Tech
Latest: On test: Blackburn Delphi
| 5.0, Showtime: Eurohike part 7 - JF o
Hydraulic shifting and German ﬁp:
featherweights, Part 6 - Hormeagrown
gear from Storck, Schwalbe, Ortlieb lhe W
& Gore, Part 5, Part 4, . Stage 20 4 ;EI Applet SiteSelector started I j My Computer
Recent tech: 2007 tech: Antipasto

FLOAT

k. in Utah, Sordon Fraser

aplel Iea September 9 letters:
doping, Llam Killeen interview:
est day wrap: Green bullet

Lt racing pictures

till passible for Sastre to win,

up, Main & prewew Stagelbs

Start list, Past winners, Features _QJ Photos
GP Wallonie, Bel {1.1)

September 13; Top 10

Giro della Toscana Femminile, Ita (2.1}
September 12-17: Main, Stage 1 - Full results

Walverde can win says Pereiro, Sastre to fight on, Tom
Danielson diary: Feeling the difference, Beltran: Taop ten is a
nice goal

Latest Cycling Mews - Brown a worthwhile investrment?,

Janez Brajkovic interview:; Man for the future, Sinkewitz
loade T_Mrkila in 21 Sndar Teie Dahallin far Trale o lock

FREE

through Sept 3oth™

ey -
A=.FNDURANCE

|4

>

|2

2

a Internet

COP 4610L: Java Networking Part 3

Page 24 Mark Llewellyn ©




Example 2 — ReadServerFile Application

/l ReadServerFile.java

I/l Use a JEditorPane to display the contents of a file on a Web server.,
Il Application showing high-level Java networking capabilities
import java.awt.BorderLayout;

import java.awt.event.ActionEvent;

Import java.awt.event.ActionL.istener;

import java.io.lOException;

Import javax.swing.JEditorPane;

import javax.swing.JFrame;

Import javax.swing.JOptionPane;

Import javax.swing.JScrollPane;

import javax.swing.JTextField;

import javax.swing.event.HyperlinkEvent;

import javax.swing.event.HyperlinkListener;

public class ReadServerFile extends JFrame
{
private JTextField enterField; // JTextField to enter site name
private JEditorPane contentsArea; // to display Web site
I set up GUI
public ReadServerFile()
{

super( "Simple Web Browser" );

COP 4610L: Java Networking Part 3 Page 25 Mark Llewellyn ©




Example 2 — ReadServerFile Application (cont.)

/I create enterField and register its listener
enterField = new JTextField( "Enter file URL here");
enterField.addActionListener(
new ActionListener()
{
/I get document specified by user
public void actionPerformed( ActionEvent event )
{
getThePage( event.getActionCommand() );
} // end method actionPerformed
} // end inner class
); // end call to addActionListener
add( enterField, BorderLayout.NORTH );
contentsArea = new JEditorPane(); // create contentsArea
contentsArea.setEditable( false );
contentsArea.addHyperlinkListener(
new HyperlinkListener()
{
/I if user clicked hyperlink, go to specified page
public void hyperlinkUpdate( HyperlinkEvent event )
{
if (event.getEventType() == HyperlinkEvent.EventType. ACTIVATED )
getThePage( event.getURL().toString() );
} // end method hyperlinkUpdate
} // end inner class
); // end call to addHyperlinkListener

COP 4610L: Java Networking Part 3 Page 26 Mark Llewellyn ©




Example 2 — ReadServerFile Application (cont.)

add( new JScrollPane( contentsArea ), BorderLayout. CENTER );

setSize( 400, 300 ); // set size of window
setVisible( true ); // show window
} // end ReadServerFile constructor

// load document
private void getThePage( String location )
{

try // load document and display location
{
contentsArea.setPage( location ); // set the page
enterField.setText( location ); // set the text
}// end try
catch ( IOException ioException )
{
JOptionPane.showMessageDialog( this,
"Error retrieving specified URL", "Bad URL",
JOptionPane.ERROR_MESSAGE );
} // end catch
} // end method getThePage

/l ReadServerFileTest.java
/I Create and start a ReadServerFile.
import javax.swing.JFrame;

public class ReadServerFileTest

{

public static void main( String args[] )
{
ReadServerFile application = new ReadServerFile();
application.setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE);
} /[ end main
} // end class ReadServerFileTest

>_4

S

} // end class ReadServerFile

Driver class to execute
ReadServerFile application

COP 4610L: Java Networking Part 3

Page 27 Mark Llewellyn ©




& Simple Web Browser,

Initial Web browser GUI

GUI after user
entered URL

]
hitp:iseeee 5 UCT edufcoursesicop 461 0ifall 2006

(&

COP 4610L. - Distributed Applications in the Enterprise - Fall 2006

Tuesday & Thursday 12:00-1:15 pm ENG2 105

Instructor: Dr. Mark Llewellyn
CSH 242
407y 823-2790
Email to: markligcs ucfedu

TA Information
Chen-Fu Chiang

Office Hours: Friday ?:00am-MNoon (CC1 102) (Please email for appointments at other Hnmes)
Email: cchiangicics.ucEedu

Clourge Calencar
Sxrllabns

Lecture Motes
Course fAssigrunents

Tamra Clode Exarnples

—

COP 4610L: Java Networking Part 3 Page 28 Mark Llewellyn ©




Secure Sockets Layer (SSL)

Most e-business uses SSL for secure on-line transactions.

SSL does not explicitly secure transactions, but rather secures
connections.

SSL implements public-key technology using the RSA
algorithm (developed in 1977 at MIT by Ron Rivest, Adi
Shamir, and Leonard Adleman) and digital certificates to
authenticate the server in a transaction and to protect private
Information as it passes from one part to another over the
Internet.

SSL transactions do not require client authentication as most
servers consider a valid credit-card number to be sufficient for
authenticating a secure purchase.

.
COP 4610L: Java Networking Part 3 Page 29 Mark Llewellyn © g/




How SSL Works

Initially, a client sends a message to a server.

The server responds and sends its digital certificate to the client for
authentication.

Using public-key cryptography to communicate securely, the client
and server negotiate session keys to continue the transaction.

Once the session keys are established, the communication proceeds
between the client and server using the session keys and digital
certificates.

Encrypted data are passed through TCP/IP (just as regular packets
over the Internet). However, before sending a message with
TCP/IP, the SSL protocol breaks the information into blocks and
compresses and encrypts those blocks.

P
COP 4610L: Java Networking Part 3 Page 30 Mark Llewellyn © g)}




How SSL Works (cont)

e Once the data reach the receiver through TCP/IP, the SSL
protocol decrypts the packets, then decompresses and
assembles the data. It is these extra processes that provide an
extra layer of security between TCP/IP and applications.

e SSL is used primarily to secure point-to-point connections
using TCP/IP rather than UDP/IP.

 The SSL protocol allows for authentication of the server, the
client, both, or neither. Although typically in Internet SSL
sessions only the server iIs authenticated.

P
COP 4610L: Java Networking Part 3 Page 31 Mark Llewellyn © g)}




=

> W

12.
13.
14.
15.

Server hello

Certificate optional

Server hello done

Finished

SERVER CLIENT

< 1. Client hello

Certificate request optional >

Server key exchange optional >
< 7.  Certificate optional
< 8.  Client Key exchange
B 9.  Certificate verify optional
< 10. Change to encrypted mode
< 11. Finished

Change to encrypted mode >

»14. Encrypted data

Encrypted data <

Close messages

T15.

Close messages.

COP 4610L: Java Networking Part 3

Page 32

Mark Llewellyn ©




Detalls Of The SSL Protocol

Use the diagram on the previous page to index the
steps.

Client hello. The client sends the server
Information including the highest level of SSL it
supports and a list of the cipher suites it supports
Including cryptographic algorithms and key sizes.

Server hello. The server chooses the highest
version of SSL and the best cipher suite that both
the client and server support and sends this
Information to the client.

(
COP 4610L: Java Networking Part 3 Page 33 Mark Llewellyn © gj‘l




Detalils Of The SSL Protocol (cont)

Certificate. The server sends the client a certificate
or a certificate chain. Optional but used whenever
server authentication is required.

Certificate Request.  If the server needs to
authenticate the client, it sends the client a
certificate request. In most Internet applications
this message is rarely sent.

Server key exchange. The server sends the client a
server key exchange message when the public key
Information sent in (3) above Is not sufficient for
key exchange.

(
COP 4610L: Java Networking Part 3 Page 34 Mark Llewellyn © g};




Detalils Of The SSL Protocol (cont)

6. Server hello done. The server tells the client that it
Is finished with its Initial negotiation messages.

/. Certificate. If the server requests a certificate from
the client in (4), the client sends its certificate chain,
just as the server did in (3).

8. Client key exchange. The client generates
Information used to create a key to use for
symmetric encryption. For RSA, the client then
encrypts this key information with the server’s
public key and sends it to the server.

(
COP 4610L: Java Networking Part 3 Page 35 Mark Llewellyn © g};




Detalils Of The SSL Protocol (cont)

9. Certificate verify. This message IS sent when a
client presents a certificate as above. Its purpose Is
to allow the server to complete the process of
authenticating the client. When this message Is
used, the client sends information that it digitally
signs using a cryptographic hash function. When
the server decrypts this information with the client’s
plqblic key, the server Is able to authenticate the
client.

10. Change to encrypted mode. The client sends a
message telling the server to change to encrypted
mode.

11. Finished. The client tells the server that it Is ready
for secure data communication to begin.

P
COP 4610L: Java Networking Part 3 Page 36 Mark Llewellyn © g)}




Detalils Of The SSL Protocol (cont)

12. Change to encrypted mode. The server sends a
message telling the client to switch to encrypted mode.

13. Finished. The server tells the client that it Is ready for
secure data communication to begin. This marks the
end of the SSL handshake.

14. Encrypted data. The client and the server communicate
using the symmetric encryption algorithm and the
cryptographic hash function negotiated in (1) and (2),
and using the secret key that the client sent to the server
In (8).

15. Close messages. At the end of the connection, each
side will send a close notify message to inform the peer
that the connection is closed.

(
COP 4610L: Java Networking Part 3 Page 37 Mark Llewellyn © g};




Java Secure Socket Extension (JSSE)

SSL encryption has been integrated into Java technology
through the Java Secure Socket Extension (JSSE). JSSE has
been an integral part of Java (not a separately loaded
extension) since version 1.4.

JSSE provides encryption, message integrity checks, and
authentication of the server and client.

JSSE uses keystores to secure storage of key pairs and
certificates used in PKI (Public Key Infrastructure which
Integrates public-key cryptography with digital certificates
and certificate authorities to authenticate parties In a
transaction.)

A truststore Is a keystore that contains keys and certificates
used to validate the identities of servers and clients.

.
COP 4610L: Java Networking Part 3 Page 38 Mark Llewellyn © g/




Java Secure Socket Extension (JSSE) (cont)

e Using secure sockets in Java is very similar to using the non-

secure sockets that we have already seen.

o JSSE hides the details of the SSL protocol and encryption
from the programmer entirely.

« The final example In this set of notes involves a client

application that attempts to logon to a server using SSL.

« NOTE: Before attempting to execute this application, look at
the code first and then go to page 45 for execution details.
This application will not execute correctly unless you follow
the steps beginning on page 45.

COP 4610L: Java Networking Part 3

Page 39

Mark Llewellyn ©

( L
ot |
S




/I LoginServer.java
/I LoginServer uses an SSLServerSocket to demonstrate JSSE's SSL implementation.
package securitystuff.jsse;

I/l Java core packages LoginServer.java
import java.io.*;

SSL Server Implementation

I/l Java extension packages
import javax.net.ssl.*;

public class LoginServer {
private static final String CORRECT_USER_NAME = "Mark";
private static final String CORRECT_PASSWORD ="COP 4610L";
private SSLServerSocket serverSocket;

/I LoginServer constructor
public LoginServer() throws Exception

{
I/l SSLServerSocketFactory for building SSLServerSockets

SSLServerSocketFactory socketFactory = Use default
( SSLServerSocketFactory ) / SSLServerSocketFactory to
SSLServerSocketFactory.getDefault(); create SSL sockets
Il create SSLServerSocket on specified port

serverSocket = ( SSLServerSocket )
socketFactory.createServerSocket( 7070 ); <— SSL socket will listen on port 7070

} // end LoginServer constructor

COP 4610L: Java Networking Part 3 Page 40 Mark Llewellyn ©




/] start server and listen for clients
private void runServer()

{
Il perpetually listen for clients _ _
while ( true ) { Accept new client connection.
// wait for client connection and check login information This is a blocking call that
try { returns an SSLSocket when a
System.err.printin( "Waiting for connection..." ); client connects.

/| create new SSLSocket for client

SSLSocket socket = ( SSLSocket ) serverSocket.accept();
// open BufferedReader for reading data from client

BufferedReader input = new BufferedReader( T
new InputStreamReader( socket.getinputStream() ) );
/I open PrintWriter for writing data to client o

PrintWriter output = new PrintWriter( Get input and output
new OutputStreamWriter(socket.getOutputStream() ) )_/ streams just as with
String userName = input.readLine(); e
String password = input.readLine();
if (userName.equals( CORRECT_USER_NAME ) &&
password.equals( CORRECT_PASSWORD ) ){ «

output.printin( "Welcome, " + userName );

} Validate user name and

else { password against constants
output.printin( "Login Failed."); on the server.

}

P
COP 4610L: Java Networking Part 3 Page 41 Mark Llewellyn © gjr




Il clean up streams and SSLSocket
output.close();
input.close();
socket.close();

P
<

Close down 1I/O streams and the socket

}// end try

// handle exception communicating with client
catch ( IOException ioException ) {
IoException.printStackTrace();

}

} // end while
} /I end method runServer

/I execute application
public static void main( String args[] ) throws Exception
{
LoginServer server = new LoginServer();
server.runServer();

}

} /lend LoginServer class

COP 4610L: Java Networking Part 3 Page 42 Mark Llewellyn ©




/I LoginClient.java

/I LoginClient uses an SSLSocket to transmit fake login information to LoginServer.
package securitystuff.jsse;
/[ Java core packages
import java.io.*; LoginClient.java
/[ Java extension packages
import javax.swing.*;
Import javax.net.ssl.*;

Client Class for SSL Implementation

public class LoginClient {

I nginCIi_ent constructor Use default SSLSocketFactory
public LoginClient() to create SSL sockets
{

/I open SSLSocket connection to server and send login

try {

// obtain SSLSocketFactory for creating SSLSockets

SSLSocketFactory socketFactory = ( SSLSocketFactory ) SSLSocketFactory.getDefault();

Il create SSLSocket from factory

SSLSocket socket = ( SSLSocket ) socketFactory.createSocket( "localhost”, 7070 );

/I create PrintWriter for sending login to server

PrintWriter output = new PrintWriter( ¥
new OutputStreamWriter( socket.getOutputStream() ) );

// prompt user for user name

String userName = JOptionPane.showlnputDialog( null, "Enter User Name:" );

I/l send user name to server

output.printin( userName );

SSL socket will listen on port 7070

COP 4610L: Java Networking Part 3 Page 43 Mark Llewellyn ©




/I prompt user for password
String password = JOptionPane.showlnputDialog( null, "Enter Password:" );
I/l send password to server
output.printin( password );
output.flush();
Il create BufferedReader for reading server response
BufferedReader input = new BufferedReader(
new InputStreamReader( socket.getinputStream () ) );
I/ read response from server
String response = input.readLine();
/l display response to user
JOptionPane.showMessageDialog( null, response );
/Il clean up streams and SSLSocket
output.close();
input.close();
socket.close();
}/ end try
/I handle exception communicating with server
catch ( IOException ioException ) {

IoException.printStackTrace();
/I execute application

Il exit application public static void main( String
finally { argsl] )
System.exit( 0 ); {
new LoginClient();
} // end LoginClient constructor }
}

COP 4610L: Java Networking Part 3 Page 44 Mark Llewellyn ©




Creating Keystore and Certificate

 Before you can execute the LoginServer and LoginClient
application using SSL you will need to create a keystore and
certificate for the SSL to operate correctly.

o Utilizing the keytool (a key and certificate management tool)
In Java generate a keystore and a certificate for this server
application. See the next slide for an example.

o We’ll use the same keystore for both the server and the client
although in reality these are often different. The client’s
truststore, in real-world applications, would contain trusted
certificates, such as those from certificate authorities (e.g.
VeriSign (www.verisign.com), etc.).

.
COP 4610L: Java Networking Part 3 Page 45 Mark Llewellyn © g/




Creating Keystore and Certificate

c» Command Prompt (2) - |I:I|i

C:sProgram FilessJavasjdkl.5.8%hin>*keytool —genkey —-keystore S5S5LStore —alias SSL
Certificate
Enter keystore password: root
Keystore password is too short — must he at least 6 characters
Enter keystore password: mastep
What iz your first and last name?
[Unknownl: Mark Llewellyn _ _ Note requirements for password.
lhat is the name of vour organizational unit?

[Unknownl: UCF CS

What iz the name of your organization?
[Unknownl:z UCF

hat is the name of your City or Locality?
[Unknownl: Orlando

llhat is the name of vour State or Province?
[Unknownl: Florida

llhat is the two-letter country code for this wunit?
[Unknownl:= US

IE[GH?HEPH Llewellyn, OU=UCF C5, 0=UCF, L=0rlando, 5T=Florida. C=US correct?
nol: yes

Enter key password for <SS5LCertificate’
C{RETURN if szame as keystore password?: mastep

C:sProgram FilessJavasjdkl.5.8%bin> bl

(
\ )
COP 4610L: Java Networking Part 3 Page 46 Mark Llewellyn © 11@\5/




Creating Keystore and Certificate

Viewing the keystore contents
= Command Prompt (2) after its creation.

C:“Program Files“Java*jdkl.5.8%bhin>*keytool —-list —v —-keystore S55LEStore
Enter keystore password: master

Keyztore type: jhks
Keyztore provider: SUN . .
4 r Notice the entry type is keyEntry
Your keystore contains 1 entry which means that this entry has a

filias name: sslcertificate private key associated with it.

Creation date: Sep 20, 20085

Entry type: keyEntry

Certificate chain length: 1

Certificatel1]:

Ouner: CHN=Mark Llewelluyn, OU=5chool of Computer Science, O0=UCF,., L=0rlando,. S5T=F1
orida, C=US

Issuer: CH=Mark Llewellyn. OU=5chool of Computer Science, O0=UCF., L=0rlando. ST=F
lorida. C=US

Serial number: 4330%Yedf

Valid from: Tue Sep 260 16:25:-35 GHMT-H5:-880 2805 wuntil: Mon Dec 19 16:25:-35 GHMT-H5
tAA 2045

Certificate fingerprints:
MDG: 23:DL:GA:7A:YA:28:82:AC:BR:CR:-25:5B:1D:=BD:F5:2D
SHA1: PBA:6F:65:69:-AA:-EVP:-F2:CCz24:-97:Co6:ED:=BD=2F:-2C:53:5A:E6:=73:-26

G -sProgram FilessJavasjdkl.5.8@%bhin>

COP 4610L: Java Networking Part 3 Page 47 Mark Llewellyn ©




Creating Keystore and Certificate

¢+ Command Prompt (2)

C:=s»Program Files“Java“jdkl.5.@“bhin*keytool —export —rfc —alias sslcertificate —k

eystore S55LStore —file mycert.cer
Enter keystore password: master
Certificate stored in file <{mycert.cepr:

Export the certificate

certificate file.

into a

¢+ Command Prompt (2)

(=]

C:«Program Files“Java*jdkl.5.8%bhin*type mycert.cer
————— BEGIN CERTIFICATE———

MIIDLFCCAuwCBEMuf kBwCuYHKoZl =z jgEAwUAMHAxCzAJBgNUBAY TA IUTMHRAwDgY DUQQT EwdGhG? v
al/RhMRAwDgY DUQQH Evd PecmxhbmRuMQuuCogY DUQQKEWNUQAY x I =zAhBgNUBAsTG1N jaG?vhCBuZiBD
b21wd®aR1ciBTY211bmN1MRcwFQY¥ DUQQDEWSNY RJr I ExsZad1hGx5hjAe FuBuNTASHjAvHT I1M=0a
FuBuNTEyMT kyMT I 1M=zUaMHBxC=zAJBgHUBAYTA IUTMRAWDgY DUQQT EvdGhG? ya'RhMRAwDgY DUQGH
EwdPcmxhbmRuMQuuCog¥ DUQQKEWNUQAY x I zAhBgMUBAsTGINjaG?ubhCBuZiBDbh21wdiR1ciBTY211
bmM1MRcwFQY DUQQDEWSNY X Jr I ExsZ8d 1bGx5hjCCAbecwygEsz Bycghk jOOAQBMI I BHuKBgQD9£1 0B
HEUSKULE Spwu?0Tn?hG3U jzvRADDH j +At 1 EmallUdQCJR+1 k? jU j6vBXH1u jD2 yStUbNe BOAAANG/ v
ZmCIa519paSfn+gEexAivk+?qdf +t8Yh+DtH58 a0 phUPBPuD? t PFH=MCHUQT haRMvZ1864rYdog
AT iAxmdBUgBxwIVAJdgUI BU I wuMs pKSggLrhAvwl!B=1 Ao GBAPf ho I XWmz3e yPyrdDadU? 151K+
+jrggulETA=?2B4dnUU 1R jrrUUU . mc Qe QgY CASREx ] +thMEKBYTt88.JMoz1 puES FngLUH yNKOC jrhdr
zbZ1kW6 jEwubITUiBf tiegEkO8 ukBhooUEZCIgIPF4Ur Inwali2 ZegH tUJUQBT Dy +=z8kgA4GEAAKE
gDZmY kucn/LEZoPAAYcYHGjLAXtWAI +1 25k5Unigwh5GaNhOssYJEz 1F BIUGShak3 +kKgI FNPunT
HWNYUiLUhCaTBH3so0dY +RB1HT nenhpf texULM1xsUybMs ipH EUTFxhdkul hs 3k?dEU? aMf gF1 ht 2
L+d4BTBE/Ai/GFfUdrY=zIMAsGBygGESM44BAMFAAMuADA=AhRuQFAS ?dr2rgS PN of iQRO1txaGgIl
G/ 1leQnbxODEHm v 2?28 Judmipp¥ Q=

————— EMD CERTIFICATE————

Contents of the certificate.

COP 4610L: Java Networking Part 3 Page 48 Mark Llewellyn ©




Creating Keystore and Certificate

new truststore.

¢ Command Prompt (2)

Import the certificate into a

C:\Program Files\Javasjdkl.5.@\bin>keytool -import -alias sslcertificate -file mll

ycert.cer -keystore truststore
Enter keystore password: master
DHQEP: EHEEaPk Llewellyn, OU=8chool of Computer Science, 0=UCF, L=0rlando, ST-=Fl
orida, C=
Issuer: CM=Mark Llewellyn, OU=School of Computer Science, 0=UCF, L=Orlando, ST=F
lorida, C=US
Serial numher: 43387edf
Ualid from: Tue Sep 2@ 16:25:35 GMI-@5:80 2005 until: Mon Dec 19 16:25:35 GMT-@5
08 2885
Certificate fingerprints:
MDS: 93:D5:0A:78:70:98:89:0C:B8:C8:95:5B:1D:BD:F5:9D
SHAL: 7B:6F:65:69:AA:E7:F2:CC:24:97:Ch:ED:AD:2F:9C:53:5A:E6:73:26
Trust this certificate? [nol: yes
Certificate was added to keystore

COP 4610L: Java Networking Part 3 Page 49 Mark Llewellyn ©

e
§




Creating Keystore and Certificate

View the contents of the
truststore. ﬂ

e+ Command Prompt (2)

C:“Program FilessJava“jdkl.5.B@%bin>*keytool —-list —wv —-keystore truststore
Enter keystore password: mastep

Keystore type: jks
Keyztore provider: SUN
Note that the entry type is trustedCertEntry, which

Your keystore contains 1 entry means that a private key is not available for this entry. It
filias name: sslcertificate also means that this file is not suitable as a

Creation date: Sep 21, 2885 KevManaaer's kevstore.
Entry type: trustedCertEntry y J Y

quﬁr: EHEgark Llewellyn, OU=8chool of Computer Science,. 0=UCF, L=0rlando, ST=F1
orida, C=
Issuer: CH=Mark Llewellyn. OU=School of Computer Science, 0=UCF, L=0rlando. ST=F
lorida,. C=US
Serial number: 4338%edf
Ualid from: Tue Sep 28 16:25:35 GHT-85:868 28685 until: Mon Dec 19 16:25:35 GMT-85
88 26885
Certificate fingerprints:

MD5: 23:DL:GA:7A:Y0:98:-87:AC:BB:CB:95:5B:1D:BD:-F5%:7D

SHA1: 7B:6F:65:69:AA-EY:-F2:CC:24:97:C6:ED:@D:-2F:-?C:53:5A:Eh:73:26

C:“Program FilessJavasjdkl.5.Bxbin>

COP 4610L: Java Networking Part 3 Page 50 Mark Llewellyn © '»"x.\\v!




Launching the Secure Server

« Now you are ready to start the server executing from a

command prompt...

* Once started, the server simply waits for a connection from a
client. The example below illustrates the server after waiting

for several minutes.

e+ Command Prompt (2) - java -Djavax. net.ssl.keyStore=55L5tore -Djavax.net.ssl.keyStorePas...

C:sProgram FilessJavasjdkl.5.@%bin*java -Djavax.net.ssl.keyStore=55LStore —-Djava

x.net.zsl.keyStorePaszword=master securitystuff.jsse.LoginServer

» connection. ..
» connection. ..
» connection. ..
» connection. ..

Start the SSL Server executing with this
command where you replace this password

with the password you used when you set-
up the keystore.

COP 4610L: Java Networking Part 3

Page 51 Mark Llewellyn ©




Launching the SSL Client

Start a client application executing from a new command
window...

Once the client establishes communication with the server, the
authentication process begins.

e Command Prompt (2) - java -Djavax.net.ssl.trustStore=55L5tore -Djavax.net.ssl.trustStoreP...

C:“Program Files“Javasjdkl.5.@%hin*java —-Djavax.net.ssl.trustitore=58LStore —Dja
vax.net.szl.trustStorePassword=master securitystuff. jsse.LoginClient

Start the SSL Client application executing with this
command where you replace this password with
the password you used when you set-up the
keystore. Since we are using the same keystore
for the server and the client...these will be the
same.

r
COP 4610L: Java Networking Part 3 Page 52 Mark Llewellyn © g/'j




Cr ] Enter User Hame:
|ru15|rk |

OK Cancel

Cr ] Enter Password:
\coP 4610 |

OK Cancel

@ Welcome, Mark

0K

/

User enters username
and password which
are sent to the server.

Authentication successful —
user is logged on.

COP 4610L: Java Networking

Part 3

Page 53

Mark Llewellyn ©




X

Input

Cr ] Enter User Hame:

ntark |

OK Cancel

User enters username and
password which are sent to the
server. In this case the user enters

Input

<

Cr ] Enter Password:

|if|:|rg|:|ﬂ |

OK Cancel

Message b_q

@ Login Failed.

0K

an incorrect password.

Authentication not successful —
user is not logged on.

COP 4610L: Java Networking Part 3

Page 54

Mark Llewellyn ©




Multithreaded Socket Client/Server Example

As a culminating example of networking and multi-threading, I’ve
put together a rudimentary multi-threaded socket-based
TicTacToe client/server application. The code is rather lengthy
and there isn’t really anything in it that we haven’t already seen in
the earlier sections of the notes. However, | did want you to see a
somewhat larger example that utilizes both sockets and threading
In Java. The code is on the course web page so try it out.

This application i1s a multithreaded server that will allow two
client’s to play a game of TicTacToe run on the server.

To execute, open three command windows, start one server and
two clients (in separate windows).

The following few pages contain screen shots of what you should
see when executing this code.

.
COP 4610L: Java Networking Part 3 Page 55 Mark Llewellyn © g/




Metscape 7.1 WinZip

=

=1
pEEy

Autodeploy

S
CiickTime . SEAOTAWare SE
Flayer Perzonal

CDs & Solution Center My Computers
Wik, .,

£l A
Shortcut ko Shortout ko
ZIP-100(E)  Local Disk (C)

2 -

Shortcut to 2D Shorkeut bo
Crjve jdk1.5.0

o

C:h_

7l E 7]
Ws FTE[(B'a.0  Command
Prompk (2}

d i
ShortoubEo Motepadii=)
Etdara s gl

< Tic-Tac-Toe Server

aiting connections

‘:.ummeri" LI
EI

0P 3530 -
surnmet. 2005

- - P
i

',‘
A

L

L s

Shorboubbo cop
4910

-

.

e

.

'. - . o : % .
.l'--___ — e - — - - - 3 = - - - - - -

R e = T o E P o L B R
7 el LIS fd Ll ~H -+ H = fd =3 fd . £l
MetEeans IDE. MySol s MyS QL Dery™s - Shartelk ta-q:;gﬁa*mﬁhaftcut to  “ShortebtoWebpafesand s edrientationsessactivities for - Sharbeut o €5 Shartcut
e ih Administratar Eroiuser DOUr=ES FEVIES W ref et SCHE S schedules el 2005 Dept annualirep
o - - _— e ap o= e — - 5 2 A g e
= : . : ’ — — - 1 - p-

—
- - il -

= .




[l Ll -

Metscape 7.1 WinZip

ernek Autodeploy

blorer

H
SAdTAare SE
Per=onal
=

CDs & Solution Center My Computers
Wik, .,

F ‘l‘ 2 .-"
- el

CidickTime
Flayer

-~

7l

Acrobat
ofessi,.,

£ Tic Tac Toe Client/Player

fou are player s
0P 4020

Summ%f;lﬁéf
EI

0P 3530 -
surnmet. 2005

it another player

d i
ShortoubEo Motepadii=)
Eudara E gl

— - - -

:

—
- w
2] ~H

| — -

—

>

Al
WSl
Admministrator

JrL_;; _
MetEeans IDE
T

. 4

oOUrses
e S
R .

= = 1 i -

Broser FEVIERS W
L iR,

- = = -

e
R g i
B
Sul om

Shartedbta  Webpafesand < eofisrtationssmactivties For - Shortcukto G5 Sharbeut

MySGL ek - Shortelk ta-q:;gﬁa*mﬁhaftcut ko

refErEnt,
L

- [O]X]

Indicate to first player that
server is waiting for another
player thread to connect.

h’ﬁ
ShorEeEtto oD -

L s

Shorboubbo cop
4910

| Start first player thread

— — == ﬂ. 1 ﬂ'

SCHS = sthedules “AndiESIFE 2005

DE:pt
- " — . - -

annualirep
B




e 2 A

fcle Bin Metscape 7.1 WinZip

. al = Tic-Tac-Toe Server
-~ Zi% t]‘ Server awaiting connections

ernet - Autodsploy L [PlayerX connected
larer Flayer O connected

1;

G i [- [B]X]

= ~Tic Tac Toe Client/Player
oL are player " .

You are player"o"

layer ¥ connected Flayer O cannected, please wait

faiting for another player
ther plaver connected. Your move.

Server
completes

connection for
second player.
Notifies Player
X that they can
make their

Second player
thread connects to
server and is ready

Player X is notified by
server that another

player has connected b =
and they Can make :':-' T . i = C.LO > o 1A : e : .__-' For,  Shorkcuk bo l:'_:n-r Shorkcuk
their move. i £ o rEFErEnS . SCnedules . Z005 anpt annualirep

e




2

WinZip

- ) < Tic-Tac-Toe Server [~ [3]X]

~ Zi% t]' Server awaiting connections
ernet futodeploy Flayver ¥ connected
larer Flayer O connected

£ in location: 4
fcrobat QickTime

ofessi... Flayer

. Tic Tac Toe Client/Player

< Tic Tac Toe Client/Player
ou are player

You are player"o"

Flayer O cannected, please wait

ther player connectad. Your move. Oppanent moved. Your turn.

alid move, please wait. | ,J

r\
i)
I -ll.:.ﬁ

‘= 7
2 e R S L Server validates move

made by Player X,
records board
configuration and
notifies Player O that
they can move and

Shorkcutbo cop
40910

Player O sees the
move made by
Player X and is now
ready to make a

td
Shortout] Player X makes a

Zukicd move by placing an
“X” marker in location

4 of the game board. redraws the board for ~ | move.
P|ayel’ O 10— — <iFor = Shorkbcabiba G5 Shartcuk
———— - anpt annualiren

- - - e J i R )



2 A

fcle Bin Metscape 7.1 WinZip

) < Tic-Tac-Toe Server [ [B1X]

~ Gl t]' Server awaiting connections
ernet futodeploy Flayer X connected
larer Flayer O connected

= < in location: 4
B
Acrobat s CuickTime

ofessi,.. Flaywer ; '

Foin location: 2
Cin location: &
Foin location: 0

D in location: ¥ B :
W in location: 8 - dielac o Cliantilays;

- Tic Tac Toe Client/Player ];r@_r[g—|

oL are player "

You are player"o"

X X
# i

] |
10

(G e i) B
(T | ) .

Cpponent moved. Your turn.
alid move, please wait.
a’ Cpponent moved. Your turn.

pponent moved. Your turn.
alid move, please wait.

.
Shorkcutbo cop
40910

Ficture: w5 =TE [

Player O is notified that Player X has
made a move and is graphically
shown the updated board layout.
Server indicates Player O is now
able to make their move. No '
's| indication is given that the game is - ﬁ'
Shat technica”y over. : s For Shortcub o G5 Shorbout

[ept annu-fgl rep

e

Although Player X
has won the game,
this server is too
dumb to know this
and allows the
game to continue

| Sp— - . -
S e —

4
-



